

Future of radiotheranostics from an industrial perspective Medical Economics in Nuclear Medicine

Chrysalium Consulting SOFRA meeting, May 26, 2021 Richard Zimmermann

What to expect in NM within the next 10 yearsseen from the point of view of investors and industry

Three major questions

- What will be new for patients ? 2021-2026
- What is of real interest for investors ? 2021-2026
- What is now to expect from research teams ? 2023-2030

Major aim: why and where to invest in Radiopharmaceuticals?

Message 1

Do not trust economists, advisors and fortunetellers

New names (vectors)

New tracers/drugs brand names

New companies

Investing in radiopharmaceuticals

- Starting point: Knowledge about the nuclear medicine field
- Difference between Research tool or Marketed tracer/drug i.e. Publication or Patent
- Funds availability => subgroups: from < € 10K up to several €B
 - Stepwise investment: 4F Business angels Equity financing ... Stock funds
- Difference between Diagnostics and Therapeutics
- Expected profitability: Alternatives to the pharmaceutical business

Principle of Molecular Targeting

Message 2

Global Economics is driving Nuclear Medicine development - not Science

Investors will bring money in the radiopharmaceutical industry only if they are sure it can be more profitable than other businesses

Primary criteria	Proprietary molecules (no generics) Access to worldwide rights (no local products) No 'me-too', no 'me-too+' Availability of biodistribution data in man (no early research projects)
Market data and competition	Medical need (at the time of entrance on market) No in-house competition and non-competitive new approach Limited competition with non NM modalities No future competition with non-imaging diagnosis
Technical data	Modality is not an issue Type of vectors or indications are not issues Systemic drug, no local applications/therapy Good non-optimized synthesis yields Realistic manufacturing costs Easy access to starting materials involving GMP grade RNs
Non technical criteria	If possible same day imaging Reimbursement

Major basic rule

Be first sure there is a clean solution to bring your tracer/drug on the market when development is complete (in 5-8 years), before starting investing in its full development

Investors need to have trust in the capacity to reach the figures of the business plan before challenging these figures

Example of a true issue: new ¹⁸F-tracers

- There is an excess of FDG production centers (800+) and still some countries and location remain underequipped
- Existing centers are not all GMP (probably only 400 are) and most of them are located in hospitals (HRPs)
- Most of them have been built for ¹⁸F-FDG only and cannot handle more than 4 different molecules in parallel
- They cannot expend and they are not able to follow new GMP rules
- New ¹⁸F-labeled tracers are now entering the market and FDG will not disappear
- About 110+ cyclotron equipped centers are still missing in already equipped countries (mainly EU)

Radionuclides

Radionuclides: a kind of 'natural' selection

14

Radionuclide production: Economic considerations

- Value of the PET network (¹⁸F half-life 2 hours)
 - France or Germany (homogeneous population): hypothesis 5 centers 5M€ in average: € 25 M
 - Extrapolation to Europe x 450/70 = € 160M
 - North American market: approx. same size => World > € 400M
 - ¹²⁴I or ⁸⁹Zr: about 7M€ /site but only 2-4 required worldwide: € 15-25M
 Exception short half life (¹²³I): >10 sites worldwide = >> € 150M
- Reactor: investment of €500M -> €1,000M, but ...
- Extension of an existing SPECT or therapy site (e.g. ¹⁷⁷Lu)
 - Estimated 3-5M€/site (2-4 required worldwide): € 10-20M
- Accelerators (production of ²²⁵Ac or ⁶⁷Cu): € 40-60M (per site 2+ sites needed)

15

Lutetium-177

- Two qualities of the radionuclide available
 - Carrier added from direct irradiation of ¹⁷⁶Lu, i.e. low specific activity contains ^{177m}Lu (160 d)
 - Non-carrier added from irradiation of ¹⁷⁶Yb and decay of resulting ¹⁷⁷Yb, high specific activity
- Since January 2018, first ¹⁷⁷Lu-drug on the market: ¹⁷⁷Lu-Lutathera (Novartis/AAA) ca Lu
- 17+ ¹⁷⁷Lu-drugs presently under clinical development and 30+ under preclinical stage
- All of them labeled with the non-carrier added form
- 100,000 patients @ 3x 200 mCi dose/year = 60 kCi/y

(200 mCi = EOB, => i.e. 100 mCi in average @ calibration)

Chemistry driven development

Radionuclide selection (2020-2026)

For the next 8 to 10 years, RPs will be based on the following radionuclides

PET radionuclides ¹⁸F, ⁶⁸Ga, ⁸⁹Zr and ⁶⁴Cu: directly or indirectly cyclotron produced

SPECT radionuclides 99mTc: reactor/generator (99Mo)

¹²³I: cyclotron (interest declining)

Therapy

¹⁷⁷Lu and ¹³¹I : reactor
²¹¹At and ²²⁵Ac : cyclotron
²¹²Pb : decay product
^{117m}Sn : accelerator

Outsiders (for research purpose)... if...: ⁶⁷Cu, ⁴³Sc/⁴⁴Sc/⁴⁷Sc, ¹⁴⁹Tb/¹⁵²Tb/¹⁵⁵Tb/¹⁶¹Tb, ²¹³Bi, (²²⁷Th) Declining interest (from industry's point of view)

¹¹C, ¹²⁴I

⁶⁷Ga, ¹¹¹In

⁹⁰Y, ¹⁵³Sm, ¹⁶⁶Ho, ¹⁸⁶Re, ¹⁸⁸Re

Message 3

The selection of radionuclides for the next ten years is complete.

Be aware that we still will have to solve the shortage of

⁶⁸Ge - ²²⁵Ac - ⁶⁴Cu - ⁶⁷Cu - ²¹¹At

State of the art

Worldwide equipment - Summary

Cameras and cyclotrons

	USA	EU (geogr. w/o Russia)	World (2019)	World (est. 2025)	
SPECT (est. 2019)	12,600	4,540	25,500	29,000	
PET (est. 2019)	2,350	1,020	6,700	8,600	
Cyclotrons (est. 2019) (<25 MeV)	245	240	1,250	1,400	
Population (millions - 2019)	327	603	7,800	8,200	

Trends

- SPECT: slow evolution in Asia and replacement market •
- PET cameras: faster growth but due to filling gaps •
- Cyclotrons: 40 new units per year (Asia mainly) saturation of sites •

Additional issues

Limited access to shielded rooms

Message 4

PET will not replace SPECT

MRI will not replace radiodiagnostics

SPECT will not disappear nor will the interest for ^{99m}Tc fade

FDG will not disappear either, while bringing a new ¹⁸F-tracer on the market will remain expensive

But ⁶⁸Ga (or ⁸⁹Zr) will not replace ¹⁸F

Pipeline and Chances of Success

	Diagnostic PET/SPECT	Radio- Therapeutic	Conventional Therapeutic
Chances of success (%)			
End of Phase II -> Market	70-80%	40-50%	15-20%
End of Tox -> Market	7-10%	5-8%	1-5%
Budget (M€)			
Preclinical stage	2-6	2-10	5-20
Clinical (theoretical)	20-30	50-80	200-300
Total (realistic)	80-120	120-180	400-600

These €€ figures do not include the failures

... and do not include financial costs, marketing budget and manufacturing tools investments

Message 5

The development costs of a drug are almost the same if the drug is developed for a limited territory or for the world market

Importance of the proprietary aspect

- 93% of all marketed radiopharmaceuticals are generics Including all ^{99m}Tc labeled tracers (but one) and ¹⁸F-FDG
- More than 50% of all marketed tracers/drugs are (or were) available as at least 3 generic forms
- Generics (or limited IP) include also ²²³Ra-Radium Chloride (Xofigo) ¹⁷⁷Lu-DOTATATE (Lutathera) - ¹⁷⁷Lu-PSMA-617
- But there are possibilities to keep some advantages:
 - Technical process (chemistry, production, formulation, ...)
 - Orphan drug status
 - Specific case of Antibodies (exclusive access to the master cell bank)

Nowadays, no serious investor will bring money for developing generics

Message 6

Cf: Telix Pharma Point BioPharma

Messages 7 and 8

Conventional pharmaceutical industry is absolutely not interested in diagnostics

The radiopharma industry (RPI) never really had the funds to develop RPs but will continue controlling diagnostics.

RPI will also act as CMOs for big pharmas.

Radiopharmaceuticals

Big Pharmas become interested (in therapy)

Serious interest

R&D program

Wait & Watch

- Bayer Healthcare
- Hoffmann La Roche 2
- Ipsen Pharma
- Johnson & Johnson 1
- Novartis 3
- Sanofi 7

Total M&A in NM > € 17B (2014-2021) > 2.5 B (2020-2021)

- Astellas
- Astra Zeneca 11
- Bristol Myers Squibb 9
- Eisai
- Eli Lilly 13
- Genentech
- Janssen Biotech
- Lundbeck
- Merck & Co 4
- Merck
- Merieux
- Pfizer 8

- Boehringer Ingelheim
- Guerbet
- GSK 5
- Otsuka
- Wyeth

Non-exhaustive list 1-15: Ranking based on revenues 2020

²²³Ra-Radium Chloride (Xofigo[®])

Bayer's ²²³Ra-Xofigo (ex Alpharadin) was supposed to become a blockbuster

- Indication: treatment of patients with castration-resistant prostate cancer (CRPC), symptomatic bone metastases and no known visceral metastatic disease
- Not only pain palliation, improved life expectancy from 11.3 to 14.9 months
- Price: in the US \$ 69K, about € 40K in EU, for a treatment of 6 consecutive injections of 0.1 µCi of ²²³Ra
- Sales:

EUR million	2013	2014	2015	2016	2017	2018	2019	2020
Xofigo	41	157	257	331	408	351	303	262

¹⁷⁷Lu-Oxodotreotide (Lutathera)

Molecule acquired by Novartis in September 2017 - Launched January 2018

- Indication: treatment of patients with gastro-entero pancreatic neuroendocrine tumors
- Price: in the US, \$47,500 per dose (full treatment corresponds to 4 consecutive injections of 200 mCi of ¹⁷⁷Lu-labeled drug
- Sales:

USD million	2018	2019	2020	Q1-2020
Lutathera	167	441	445	(122)

Competition: ¹⁷⁷Lu-PNT2003 (2021+)

Somatostatin analogues under development 33 still

33 still active/54

				active/54
Marketed tracers/dru	igs	Clinical development	Preclinical stage	
 ⁶⁸Ga-DOTATATE ⁶⁸Ga-DOTATOC ^{99m}Tc-EDDA/HYNIC-TOC ^{99m}Tc-Octreotate ¹¹¹In-Pentetreotide 	5	 ⁶⁷Ga-DOTATOC ⁶⁸Ga-NODATOC -DOTANOC -HA-DOTATATE -IPN-01070 ⁶⁴Cu-DOTATATE -SARTATE 	 ¹⁸F-AMBF₃-TATE ⁶⁸Ga-AM3 -EB-TATE -NODAGA-E[c(RGDyK)]₂ -NODAGA-LM3 -SOMA-PK-Dx 	6
177Lu-DOTATATE Tracer/drugs on hold:	1	 ⁶⁷Cu-SARTATE ¹⁷⁷Lu-DOTA-EB-TATE -HA-DOTATATE/PNT2003 -DOTATOC -IPN-01072 ¹⁸⁸Re-P2045 ²¹²Pb-Ar-RMX 	 ⁶⁷Cu-DOTATATE ¹⁷⁷Lu-SOMA-PK-Rx ²¹²Pb-DOTAMTATE ²¹³Bi-DOTATATE DOTATOC ²²⁵Ac-DOTATATE DOTATOC 	7
Diagnostics (9): Therapeutics (12): 21				Non-exhaustive list

Diagnosis

Therapy

¹⁷⁷Lu-PSMA-617 (¹⁷⁷Lu-Vipivotide)

Heidelberg University / ABX / Endocyte / Novartis

- Mechanism: anti-PSMA peptide
- Indications: metastazed prostate cancer therapy
- Imaging agent: ⁶⁸Ga-PSMA-11 (Illucix/Illumet)
- Status: Phase III completed NDA filed
- Expected launch: 2021+
- **Comments:** partial IP protection > 2030 (some side-effects)
- Very high potential competition -> ¹⁷⁷Lu-PNT2002

PSMA targeting drugs under development

65 PSMA target/88

Close to market	Clinical development	Preclinical stage	+27 011 11010
 ⁶⁸Ga-PSMA-11 (<i>illumet/illuccix</i>) ⁶⁸Ga-THP-PSMA (<i>Galliprost</i>) ¹⁸F-DCFPyL 	 ^{99m}Tc-EC0652, iPSMA, MIP-1404 ¹⁸F-CTT1057, rh-PSMA-7, PSMA-1007, PSMA-SR6, RPS-040, RPS-041, ⁶⁸Ga-DOTA-FFK, PSMA-R2, PSMA^{I&T} ⁸⁹Zr-Df-IAB2M ⁶⁴Cu-PSMA-617 ⁴⁴Sc-PSMA-617 	 ¹⁸F- AIF-PSMA-11, FC303, HTK01069, HTK01070, HTK01130, JK-PSMA-7 ⁶⁸Ga-IRDye800CW, P16-093, NOTA-PSMA-BCH,PSMA-PK-Dx ⁶⁴Cu-PSMA-ALB-89, PSMA-CC-34, PSMA-BCH-ZL, SarbisPSMA, CA-003, CB-TE2A-FFK ¹¹¹In-DOTA-5D3 ²⁰³Pb-CA012 	18
 ¹⁷⁷Lu-PSMA-617 	¹³¹ I-MIP-1095	 ⁹⁰Y-DOTA-EB-MCG, PSMA-617 	
 ¹⁷⁷Lu-TLX591 	 ¹⁷⁷Lu-CTT1403, PSMA-Ab06, 	 ¹³¹I-RPS-027 	
 ¹⁷⁷Lu-PNT2002 	PSMA-R2, PSMA ^{I&T}	 ¹⁶¹Tb-PSMA-617 ¹⁷⁷ 	
3	• ²²⁹ Ac-PSMA-617, TLX592	7 • • • • • • • • • •	19
		FC315	
Other approaches:		 ²¹³Bi-PSMA-617 	
Diagnostics (20): Androgen receptors (1), Bomb PARP (1), PAT (1), PSCA (1), STEAF Therapeutics (3): Biphosphonate (1), Bombesin	Desin/GRPR (11), Lipid metabolism (2), P1 (1), TAG72 (1), VPAC1(1)	 ²²⁵Ac-hu11B6, RPS-074, TLX591 ²²⁷Th-PSMA-TTC 	

Diagnosis

Therapy

PSMA target development approach

PSMA: Prostate Specific Membrane Antigen = GCPII: Glutamate Carboxypeptidase II PSMA = FOLH1 = FGCP = FOLH = GCP2 = GCPII = NAALAD1 = NAALAdase = mGCP = folate hydrolase

Potential indications of interest: CCRC, bladder, adenocarcinoma, NET, GBM, melanoma, pancreas carcinoma, NSCL, soft tissue sarcoma, breast carcinoma

Message 9

In a same indication, there is no real sense to develop more than 3 to 5 similar molecules.

"Me-too" and "Me-too+" are second options

A new proprietary approach must show real advantages and then will displace the existing marketed drug

New Radiotherapeutics under development (2021-2026)

¹³¹I-TLX101 (2024), ¹³¹I-Burtomab and ¹³¹I-Naxitamab (2025), ⁷⁷Lu-FF-10158 (2026) **Brain cancers** ¹³¹LCAM-H2 (2025), ¹⁷⁷LU HP2 (2026), ¹⁷⁷LU-NM600 (2027), ²¹¹At-ABY-025 (2027) **Breast cancer** ¹⁷⁷Lu-Solucin (2023), ¹⁷⁷Lu-Satoreotide (2024), ⁶⁷Cu-Sartate (2026), ⁽¹⁷⁷Lu-DOTA-EB-TATE (2026)) NET ²¹ZPb-DOTAMTATE (177LU-PNT2003 (2021) ¹⁷⁷Lu) IPN-01087 (2024), ⁽¹⁷⁷Lu) MVT-1075 (2026), ²¹²Pb-AR-RMX (2027) **Pancreas Kidney cancer** ¹⁷Tu-TLX250 (2023) ¹⁷4u²⁵Ac-PSMA-617 (2021/2025), (¹⁷⁷Lu²²⁵Ac-TLX591 (2022/<u>2</u>026), (⁷⁷Lu-CTT-1403 (2025), **Prostate cancer** ¹/7Lu)NeoBomb1, (¹⁷⁷Lu)PSMA-R2 (2024), (¹⁷⁷Lu)ZDA (2025), (¹⁷⁷Lu)RM2 (2026), (¹⁷⁷Lu)EB-PSMA-617 ¹⁷4u)PNT2002 (2023) DOTAZOL (2024), (¹⁷⁷Lu)Pentixather (2025), ²²⁵Ac-FPI-1434 (2025), ¹³¹I-Metuximab (2020) Solid tumors ¹⁷⁷Lu-Lilotomab - (¹⁷⁷Lu)-Humalutin (2022/2024), ²²⁷Th-BAY1862864 (2026) NHL ²¹³Bi-Lintuzumab/Bismab-A and ¹³¹I-Apamistamab/Iomab-B (2023/2021), ¹³¹I-CLR-131 (2025) **Blood cancers Polyarthritis** ^{117m}Sn-Synovetin (2024)

Additional research approaches: vulnerable plaque, infection, HIV, ...

Source: MEDraysintell 202

How about Cardiology ?

Marketed tracers (20):

• MPI SPECT (7): ^{99m}Tc-Sestamibi – ^{99m}Tc-Tetrofosmin – ²⁰¹TI-Thallous chloride – ^{99m}Tc Pertechnetate – ^{99m}Tc-Pyrophospate

etc ... and generics

- MPI PET (4): ¹³N-Ammonia, ¹⁵O-Water, ¹⁸F-FDG, ⁸²Rb-Rubidium all generics
- Miscellaneous (9): blood volume, DPT, blood cell labeling (⁵¹Cr, ^{99m}Tc, ¹¹¹In and ¹²³I derivatives) all generics

Tracers under clinical development (5):

- MPI and CHF (3): ¹⁸F-Flurpiridaz
- Vulnerable plaque (2)

Tracers under preclinical development (16)

- MPI and CHF (3)
- Vulnerable plaque (9)
- Miscellaneous (4) : pulmonary embolism, thrombi detection, adrenergic receptor imaging

Non-exhaustive list

How about Neurology ?

Marketed tracers (19):

- Brain perfusion SPECT (7): ^{99m}Tc-derivatives (5), ¹²³I-Iofetamine etc ... all generics
- Brain perfusion PET (2): ¹³N-Ammonia, ¹⁵O-Water all generics
- AD (4): ¹⁸F-Florbetaben, ¹⁸F-Florbetapir, ¹⁸F-Flutemetamol, ¹⁸F-Florapronol **all proprietary –** all plaque imaging
- Parkinson's Disease (5): ^{99m}Tc-TRODAT, ¹²³I-lofetamine, ¹²3I-loflupane, ¹⁸F-FDOPA, ¹⁸F-FPCIT **all generics**
- Miscellaneous (1): Stroke imaging, epilepsy (^{99m}Tc and ¹²³I derivatives) **all generics** (also used in brain perfusion)

Tracers under clinical development (35):

- AD (23) Amyloid plaque imaging (2): [¹⁸F-Flutafuranol, ¹⁸F-Amylovis] Tau/tangles imaging (7) [¹⁸F-Flortaucipir] miscellaneous (14) : PSBO/PBR
- PD (5): ¹²³I-Altropane
- Miscellaneous (7)
- Tracers under preclinical development (23) not counting pharmacological tools
- AD (14): and 12 on hold
- PD (2): and 4 on hold
- Miscellaneous (7): and 3 on hold

Non-exhaustive list

Thinking out of the box

- Rheumatoid arthritis: ^{99m}Tc-Maraciclamide, ^{99m}Tc-Chondroitin Sulphate, ¹⁸F-FEDAC, ⁶⁸Ga-DOTA-Siglec-9
- Infectiology:
 - Inflammation/Infection: ¹⁸F-Clofarabine, ⁶⁸Ga-DOTA-TBIA10, ⁶⁸Ga-NOTA-UBI29-41, ^{99m}Tc-Ubiquicidine (marketed)
 - Tuberculosis: ⁶⁸Ga-Tilmanocept
 - Chronic lung disease: ^{99m}Tc-Ciprofloxacin, ^{99m}Tc-Infliximab, ¹⁸F-FIAU
 - Cardiac device implantation: ¹⁸F-Fluoro-Maltohexaose, ¹⁸F-Fluoro-Maltotriose
 - COVID: ¹³¹I-CR3022, ^{99m}Tc/¹⁷⁷Lu-EC-Amifostine, ⁶⁴Cu-NOTA-hACE2
- **AIDS** : ⁶⁴Cu-3BNC117, ^{99m}Tc-F(ab')2-OKT4A, ^{99m}Tc-F(ab')2-CD4R1, ¹²³I-BNC117
- Diabetes imaging: ¹⁸F-Exendin-4, ⁶⁸Ga- DO3A-VS-Cys40-Exendin-4, ⁶⁸Ga-NODAGA -exendin-4, ¹⁸F-MK6240
- Veterinary Nuclear Medicine: ^{117m}Sn-Synovetin

Non-exhaustive list

Conclusions

Pipeline (Therapeutics)

Molecules under clinical development (Indications) – [May 2021]

Indication	Prostate	NET	Solid tumors	Oncology (others) [15 indications]	Non-oncology	Total
Number	18	9	7	26	2	62

Molecules under clinical development (Radionuclides)

RN	Lu-177	Y-90	I-131	Ac-225	Sn-117	Cu-67	Th-227	Pb-212	Bi-213	Others: Tb, Re, Ra	Total
Number	23	9	8	7	2	2	2	2	2	5	62

- 6 of them have entered Phase III trial all of them labeled with ¹⁷⁷Lu
- Number of ¹⁷⁷Lu labeled drugs under advanced preclinical development: 22

Intense M&A activities

Date	Event
January 2021	Blue Earth/Bracco buys therapeutic rights to rhPSMA technology from Scintomics
January 2021	Fuzionaire Radioisotope Tech. (FRIT) and Nihon Medi-Physics (NMP) are teaming up to create a new class of PET RPs.
February 2021	Aikido Pharma invests in Convergent Therapeutics for supporting the development of a RP for treating prostate cancer
February 2021	European Commission okays Siemens acquisition of Varian
March 2021	Lantheus acquires rights for NTI-1309 (FAP) from Noria Therapeutics
March 2021	Novartis acquires exclusive ww rights to develop therapeutics on the basis of a FAP library including FAP-46 and FAP-74
March 2021	Aktis Oncology announces \$72m series a financing to advance breakthrough alpha labeled RPs to treat solid tumors
March 2021	Viewpoint Molecular Targeting signs an agreement with SpectronRx for scaling-up of its 224 Ra/ 212 Pb generator VMT- α -GEN
April 2021	Fusion Pharmaceuticals acquires the intellectual property and assets related to French firm Ipsen's IPN-1087 RP
April 2021	EZAG acquires majority stake in radiopharmaceutical drug developer Pentixapharm
May 2021	Alpha-9 Theranostics Inc. announces an \$11 million Series A financing
May 2021	GEH acquires the French company Zionexa

The Nuclear Medicine (RPs) market 1990-2030 (ww)

Innovation triggering impressive growth

SPECT	PET	Radiotherapeutics					
Global Market							
The global radiopharmaceutical market is expected to reach US\$ 30 billion by 2030, showing an annual average growth of 16% from 2020 to 2030.							
The diagnostic radiopharmaceutical market average, by 7% a year, mainly driven by v from new tracers.	The therapeutic radiopharmaceutical market is expected to grow by 32% annually from 2020 to 2030.						
7	Competition						
There are 77 companies showing revenue in today's nuclear medicine market (sales of radiopharmaceuticals).							
Over 130 companies are currently involved in the development of at least one new radiopharmaceutical.							

Message 10 and conclusion

There is a bright future for nuclear medicine (and for nuclear physicians and radiopharmacists), mainly driven by radiotheranostics...

... if everyone accepts to adapt to the main changes.

All based on the natural selection rule: adapt or die

Thanks for your attention

FOUNDATION

www.oncidiumfoundation.org www.medraysintell.com www.morphopharma.com

